Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 477

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Measurement of the neutron capture cross section of $$^{185}$$Re in the keV energy region

Katabuchi, Tatsuya*; Sato, Yaoki*; Takebe, Karin*; Igashira, Masayuki*; Umezawa, Seigo*; Fujioka, Ryo*; Saito, Tatsuhiro*; Iwamoto, Nobuyuki

Journal of Nuclear Science and Technology, 6 Pages, 2024/00

 Times Cited Count:0 Percentile:0.18(Nuclear Science & Technology)

Journal Articles

Neutron-production double-differential cross sections of $$^{rm nat}$$Pb and $$^{209}$$Bi in proton-induced reactions near 100 MeV

Iwamoto, Hiroki; Meigo, Shinichiro; Satoh, Daiki; Iwamoto, Yosuke; Ishi, Yoshihiro*; Uesugi, Tomonori*; Yashima, Hiroshi*; Nishio, Katsuhisa; Sugihara, Kenta*; $c{C}$elik, Y.*; et al.

Nuclear Instruments and Methods in Physics Research B, 544, p.165107_1 - 165107_15, 2023/11

 Times Cited Count:0 Percentile:0.02(Instruments & Instrumentation)

The lack of double-differential cross-section (DDX) data for neutron production below the incident proton energy of 200 MeV hinders the validation of spallation models in technical applications, such as research and development of accelerator-driven systems (ADSs). The present study aims to obtain experimental DDX data for ADS spallation target materials in this energy region and identify issues related to the spallation models by comparing them with the analytical predictions. The DDXs for the ($$p, xn$$) reactions of $$^{rm nat}$$Pb and $$^{209}$$Bi in the 100-MeV region were measured over an angular range of 30$$^{circ}$$ to 150$$^{circ}$$ using the time-of-flight method. The measurements were conducted at Kyoto University utilizing the FFAG accelerator. The DDXs obtained were compared with calculation results from Monte Carlo-based spallation models and the evaluated nuclear data library, JENDL-5. Comparison between the measured DDX and analytical values based on the spallation models and evaluated nuclear data library indicated that, in general, the CEM03.03 model demonstrated the closest match to the experimental values. Additionally, the comparison highlighted several issues that need to be addressed in order to improve the reproducibility of the proton-induced neutron-production DDX in the 100 MeV region by these spallation models and evaluated nuclear data library.

Journal Articles

Linearization of thermal neutron scattering cross section to optimize the number of energy grid points

Tada, Kenichi

Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 8 Pages, 2023/10

The number of energy grids of the thermal neutron scattering law data has a large impact on the data size of a cross section file of continuous energy Monte Carlo calculation codes. The optimization of the number of energy grids is an effective way to reduce the data size. This study developed the linearization method of the thermal neutron scattering cross section to optimize the number of energy grids and the linearization function was implemented in the nuclear data processing code FRENDY. The linearization process which is used in the resonance reconstruction and the Doppler broadening was adopted. The criticality benchmarks which use ZrH as the moderator were calculated to estimate the impact of the difference of the energy grids on neutronics calculations. The calculation results indicate that the linearization of the thermal neutron scattering cross section improves the prediction accuracy of neutronics calculations.

Journal Articles

Neutron capture cross-section measurements with TC-Pn in KUR for some nuclides targeted for decommissioning

Nakamura, Shoji; Endo, Shunsuke; Kimura, Atsushi; Shibahara, Yuji*

KURNS Progress Report 2022, P. 73, 2023/07

The present study is concerned with the neutron capture cross-sections that contribute to the evaluation of the amount of radionuclides possessing problems in decommissioning. In this study, $$^{45}$$Sc, $$^{63}$$Cu, $$^{64}$$Zn, $$^{109}$$Ag, $$^{113}$$In and $$^{186}$$W were selected among the objective nuclides, and their thermal-neutron capture cross-sections were measured using TC-Pn equipment of the KUR of the Institute for Integrated Radiation and Nuclear Science, Kyoto University. High purity metal samples were prepared. A gold-aluminum ally wire, cobalt and molybdenum foils were used to monitor the neutron flux at the irradiation position of TC-Pn. The flux monitors and metal samples were irradiated for 1 hour at 1-MW operation of the KUR. After irradiation, the irradiation capsule was opened, samples and flux monitors were enclosed in a vinyl bag one by one, and then $$gamma$$ rays emitted from the samples and monitors were measured with a high-purity Ge detector. The thermal-neutron flux component was derived with the reaction rates of flux monitors ($$^{197}$$Au, $$^{59}$$Co and $$^{98}$$Mo) on the basis of Westcott's convention, and found to be (5.92$$pm$$0.10)$$times$$10$$^{10}$$ n/cm$$^{2}$$/sec at the irradiation position. The measured reaction rate for each metal sample divided by the evaluated thermal-neutron capture cross-section should give the same value of the thermal-neutron flux component if the cross section is suitable. This time, we found that the cross sections of $$^{45}$$Sc and $$^{94}$$Zn were consistent with the evaluated one, but those of other nuclides were inconsistent with their evaluated ones; that is, it turned out that their thermal-neutron capture cross-sections should be modified.

Journal Articles

Nuclide production cross sections in proton-induced reactions on Bi at GeV energies

Iwamoto, Hiroki; Nakano, Keita*; Meigo, Shinichiro; Takeshita, Hayato; Maekawa, Fujio

EPJ Web of Conferences, 284, p.01033_1 - 01033_4, 2023/05

 Times Cited Count:0 Percentile:0.21(Nuclear Science & Technology)

no abstracts in English

Journal Articles

ACE-FRENDY-CBZ; A New neutronics analysis sequence using multi-group neutron transport calculations

Chiba, Go*; Yamamoto, Akio*; Tada, Kenichi

Journal of Nuclear Science and Technology, 60(2), p.132 - 139, 2023/02

 Times Cited Count:2 Percentile:53.91(Nuclear Science & Technology)

A new multi-group neutronics analysis sequence ACE-FRENDY-CBZ is proposed. This sequence is free from uses of any application libraries; with the ACE files as the starting point, multi-group cross section data of media comprising a target system are calculated with the FRENDY code, and multi-group neutron transport calculations are performed with modules of the CBZ code system. The ACE-FRENDY-CBZ sequence was tested against the eight fast neutron systems, and good agreement with the reference Monte Carlo results was obtained within 30 pcm differences in the bare systems and the thorium-reflected system, and approximately 100 pcm differences in the uranium-reflected systems. The use of the current-weighted total cross sections in the multi-group neutron transport calculations had non-negligible impacts over 100 pcm on k-eff, and the calculations with the current-weighted total cross sections systematically underestimated k-eff in the uranium-reflected systems.

Journal Articles

Development of nuclear data processing code FRENDY version 2

Tada, Kenichi; Yamamoto, Akio*; Kunieda, Satoshi; Konno, Chikara; Kondo, Ryoichi; Endo, Tomohiro*; Chiba, Go*; Ono, Michitaka*; Tojo, Masayuki*

Journal of Nuclear Science and Technology, 10 Pages, 2023/00

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Nuclear data processing code is important to connect evaluated nuclear data libraries and radiation transport codes. The nuclear data processing code FRENDY version 1 was released in 2019 to generate ACE formatted cross section files with simple input data. After we released FRENDY version 1, many functions were developed, e.g., neutron multi-group cross section generation, explicit consideration of the resonance interference effect among different nuclides in a material, consideration of the resonance upscattering, ACE file perturbation, and modification of ENDF-6 formatted file. FRENDY version 2 was released including these new functions. It generates GENDF and MATXS formatted neutron multi-group cross section files from an ACE formatted cross section file or an evaluated nuclear data file. This paper explains the features of the new functions implemented in FRENDY version 2 and the verification of the neutron multigroup cross section generation function of this code.

Journal Articles

Outline of JENDL-5

Iwamoto, Osamu

JAEA-Conf 2022-001, p.21 - 26, 2022/11

Journal Articles

Implementation of resonance upscattering treatment in FRENDY nuclear data processing system

Yamamoto, Akio*; Endo, Tomohiro*; Chiba, Go*; Tada, Kenichi

Nuclear Science and Engineering, 196(11), p.1267 - 1279, 2022/11

 Times Cited Count:1 Percentile:31.61(Nuclear Science & Technology)

The resonance upscattering effect (the thermal agitation effect) is incorporated in the generation capability of multi-group neutron cross sections of the FRENDY nuclear data processing system. The resonance upscattering effect is considered by (1) the variation of self-shielding factors (effective cross sections) due to the change in ultra-fine group spectrum and (2) the variation of group-to-group elastic scattering cross sections. In the verification calculations, impacts on the ultra-fine group spectrum, effective cross sections, and neutronics characteristics (the Doppler effect) are confirmed. The effect of energy group structure and the treatments of resonance upscattering on the Doppler effect through the variation of effective cross sections and the elastic scattering matrix are studied. The results indicate that the FRENDY can provide appropriate multi-group cross sections considering the resonance upscattering effect.

Journal Articles

Development of nuclear data processing code FRENDY version 2

Tada, Kenichi; Yamamoto, Akio*; Endo, Tomohiro*; Chiba, Go*; Ono, Michitaka*; Tojo, Masayuki*

Proceedings of International Conference on Physics of Reactors 2022 (PHYSOR 2022) (Internet), 10 Pages, 2022/05

Nuclear data processing is an important interface between an evaluated nuclear data library and nuclear transport calculation codes. JAEA has developed a new nuclear data processing code FRENDY from 2013. FRENDY version 1 generates ACE files which are used for the continuous-energy Monte Carlo codes including PHITS, Serpent, and MCNP; it was released as an open-source software under the 2-clause BSD license in 2019. After FRENDY version 1 was released, many functions are developed: the multi-group neutron cross-section library generation, the statistical uncertainty quantification for the probability tables for unresolved resonance cross-section, the perturbation of the ACE file, and the modification of the ENDF-6 formatted nuclear data file, etc. We released FRENDY version 2 including these functions. This presentation explains the overview of FRENDY and features of the new functions implemented in FRENDY version 2.

Journal Articles

Investigation of the impact of difference between FRENDY and NJOY2016 on neutronics calculations

Ono, Michitaka*; Tojo, Masayuki*; Tada, Kenichi; Yamamoto, Akio*

Proceedings of International Conference on Physics of Reactors 2022 (PHYSOR 2022) (Internet), 9 Pages, 2022/05

In this paper, nuclear calculations were performed using the ACE files and the multigroup libraries created by both FRENDY and NJOY, and the impacts on the neutronics characteristics due to nuclear data processing were investigated using those libraries. MCNP was used to compare the ACE files by calculating many benchmark problems including ICSBEP and it was confirmed that the k-eff values are generally agreed with each other within the range of statistical errors. The multigroup cross sections are verified by the BWR design codes LANCR/AETNA through calculation of a commercial-grade BWR5 equilibrium core loaded with 9$$times$$9 fuels. These results indicate that fuel assembly and core characteristics are consistent with each other. From the above investigations, it was confirmed that FRENDY can provide comparable continuous/multi-group neutron cross sections with NJOY.

Journal Articles

G-HyND: A Hybrid nuclear data estimator with Gaussian processes

Iwamoto, Hiroki; Iwamoto, Osamu; Kunieda, Satoshi

Journal of Nuclear Science and Technology, 59(3), p.334 - 344, 2022/03

 Times Cited Count:4 Percentile:56.94(Nuclear Science & Technology)

A hybrid nuclear data estimator (G-HyND) based on a machine learning technique with Gaussian processes (GP) was developed. G-HyND estimates cross-sections from a hybrid training dataset composed of an experimental dataset and an analytical dataset based on a nuclear physics model, and generates the cross-section datasets including the dataset's uncertainty information. It was demonstrated that an experimental dataset and a physics model-based analytical dataset perform a complementary role in nuclear data generation, and that the generated nuclear data from the hybrid training dataset are more reasonable than only those from the experimental dataset. Furthermore, solutions for two inherent GP problems, i.e., overfitting and computational cost, are presented within the G-HyND framework.

Journal Articles

Measurement of nuclide production cross sections for proton-induced reactions on Mn and Co at 1.3, 2.2, and 3.0 GeV

Takeshita, Hayato*; Meigo, Shinichiro; Matsuda, Hiroki*; Iwamoto, Hiroki; Nakano, Keita; Watanabe, Yukinobu*; Maekawa, Fujio

Nuclear Instruments and Methods in Physics Research B, 511, p.30 - 41, 2022/01

 Times Cited Count:5 Percentile:65.59(Instruments & Instrumentation)

Nuclide production cross sections for proton-induced reactions on Mn and Co at incident energies of 1.3, 2.2, and 3.0 GeV were measured by the activation method at the J-PARC. In total, 143 production cross sections of reaction products were obtained. Among them, the cross sections of $$^{55}$$Mn(p,X)$$^{38}$$S and $$^{55}$$Mn(p,X)$$^{41}$$Ar were measured for the first time. The stable proton beam and well established beam monitoring system contributed to the reduction of the systematic uncertainties to typically less than 5%, which was better than those of the previous data. To examine the prediction capabilities of spallation reaction models and evaluated data library, the measured data were compared with the spallation reaction models in PHITS (INCL4.6/GEM, etc.), INCL++/ABLA07, and the JENDL/HE-2007 library. The comparison of the mean square deviation factors indicated that both INCL4.6/GEM and JENDL/HE-2007 showed better agreement with the measured data than the others.

Journal Articles

Integral experiments of technetium-99 using fast-neutron source reactor "YAYOI"

Nakamura, Shoji; Hatsukawa, Yuichi*; Kimura, Atsushi; Toh, Yosuke; Harada, Hideo

Journal of Nuclear Science and Technology, 58(12), p.1318 - 1329, 2021/12

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

The present study performed fast-neutron capture cross-section measurement of $$^{99}$$Tc by an activation method using a fast-neutron source reactor "YAYOI" of the University of Tokyo. Technetium-99 samples were irradiated with reactor neutrons using a pneumatic system. Reaction rates of $$^{99}$$Tc were obtained by measuring decay gamma rays emitted from $$^{100}$$Tc. The neutron flux at an irradiation position was monitored with gold foils. The fast-neutron capture cross section of $$^{99}$$Tc at neutron energy of 85 keV was derived as 0.432$$pm$$0.023 barn by using the reaction rates of $$^{99}$$Tc, evaluated cross-section data and the fast-neutron flux spectrum of the YAYOI reactor. The present study agreed with the evaluated nuclear data library JENDL-4.0.

Journal Articles

Adaptive setting of background cross sections for generation of effective multi-group cross sections in FRENDY nuclear data processing code

Yamamoto, Akio*; Endo, Tomohiro*; Tada, Kenichi

Journal of Nuclear Science and Technology, 58(12), p.1343 - 1350, 2021/12

 Times Cited Count:1 Percentile:16.35(Nuclear Science & Technology)

An adaptive setting method of background cross sections is implemented to FRENDY/MG, which is a multi-group neutron cross section generation code. In the present adaptive setting method, the range of background cross section is initially divided into 10 equal intervals and unnecessary background cross section points, at which self-shielding factors or reaction rates can be accurately interpolated, are eliminated. If the interpolation accuracy in an interval is not sufficient, the interval is successively halved until sufficient interpolation accuracy is obtained. For accurate interpolation of self-shielding factor or reaction rates, the monotone cubic interpolation is used. Verification calculations are carried out for all isotopes in JENDL-4.0 and -4.0u. Calculation results indicate that typical numbers of background cross sections are from 10 to 25 when the monotone cubic interpolation and error tolerance of 0.01 for self-shielding factors are used.

Journal Articles

Multi-group neutron cross section generation capability for FRENDY nuclear data processing code

Yamamoto, Akio*; Tada, Kenichi; Chiba, Go*; Endo, Tomohiro*

Journal of Nuclear Science and Technology, 58(11), p.1165 - 1183, 2021/11

 Times Cited Count:9 Percentile:84.69(Nuclear Science & Technology)

The multi-group cross section generation capability for neutrons is implemented in the FRENDY nuclear data processing code. ACE-formatted files are used as the source of nuclear data instead of ENDF-formatted files since FRENDY already has the capability to generate pointwise cross sections in the ACE format. Verification calculations of the newly implemented capability are carried out through the comparison with the NJOY nuclear data processing code. Cross section generations for all nuclides in JENDL-4.0, -4.0u, -5$$alpha$$4, ENDF/B-VII.1, -VIII.0, JEFF-3.3, and TENDL-2019 are carried out without unexpected processing issue, except for Pu-238 of TENDL-2019 that includes inconsistent data. The verification results indicate that the multi-group cross sections generated by FRENDY are consistent with those generated by NJOY or the calculation results by MCNP.

Journal Articles

Neutron capture cross sections of light neutron-rich nuclei relevant for $$r$$-process nucleosynthesis

Bhattacharyya, A.*; Datta, U.*; Rahaman, A.*; Chakraborty, S.*; Aumann, T.*; Beceiro-Novo, S.*; Boretzky, K.*; Caesar, C.*; Carlson, B. V.*; Catford, W. N.*; et al.

Physical Review C, 104(4), p.045801_1 - 045801_14, 2021/10

AA2021-0553.pdf:7.41MB

 Times Cited Count:5 Percentile:57.13(Physics, Nuclear)

no abstracts in English

Journal Articles

Thermal-neutron capture cross-section measurement of $$^{237}$$Np using graphite thermal column

Nakamura, Shoji; Endo, Shunsuke; Kimura, Atsushi; Shibahara, Yuji*

KURNS Progress Report 2020, P. 94, 2021/08

The present study selected $$^{237}$$Np among radioactive nuclides and aimed to converge a contradiction between reported thermal-neutron capture cross sections. Neutron irradiation was carried out using the graphite thermal column equipped with the Kyoto University Research Reactor. A solution equivalent to 950 Bq order of radioactivity was pipetted out of a $$^{237}$$Np standard solution and dropped onto a fiber filter, which was then dried with an infrared lamp to prepare a $$^{237}$$Np sample. The $$^{237}$$Np sample was quantified using 312-keV gamma ray emitted from $$^{233}$$Pa in a radiation equilibrium with $$^{237}$$Np. To monitor a thermal-neutron flux component at an irradiation position, the $$^{237}$$Np sample was irradiated together with several stable nuclides as neutron flux monitors: $$^{45}$$Sc, $$^{59}$$Co, $$^{98}$$Mo, $$^{181}$$Ta and $$^{197}$$Au. The reaction rate of $$^{237}$$Np was obtained from gamma-ray yields given by $$^{238}$$Np and $$^{233}$$Pa, and then the thermal-neutron capture cross section of $$^{237}$$Np was derived.

Journal Articles

Journal Articles

Estimation of uncertainty in proton-induced spallation neutron multiplicity for Pb, W, Fe, and C targets

Iwamoto, Hiroki; Meigo, Shinichiro

JPS Conference Proceedings (Internet), 33, p.011046_1 - 011046_6, 2021/03

no abstracts in English

477 (Records 1-20 displayed on this page)